Как летают баллистические ракеты? Что тянет снаряд вниз Почему ракеты взлетают по дуге

Ракеты поднимаются в космическое пространство за счет сжигания жидких или твердых топлив. После воспламенения в высокопрочных камерах сгорания эти топлива, обычно состоящие из горючего и окислителя, выделяют огромное количество тепла, создавая очень высокое давление, под действием которого продукты сгорания движутся в сторону земной поверхности через расширяющиеся сопла.

Так как продукты сгорания истекают из сопел вниз, ракета поднимается вверх. Это явление объясняется третьим законом Ньютона, в соответствии с которым для каждого действия существует равное по величине и противоположное по направлению противодействие. Поскольку двигателями на жидком топливе легче управлять, чем твердотопливными, их обычно используют в космических ракетах, в частности, в показанной на рисунке слева ракете Сатурн-5. Эта трехступенчатая ракета сжигает тысячи тонн жидкого водорода и кислорода для вывода космического корабля на орбиту.

Для быстрого подъема вверх тяга ракеты должна превышать ее вес примерно на 30 процентов. При этом, если космический корабль должен выйти на околоземную орбиту, он должен развить скорость около 8 километров в секунду. Тяга ракет может доходить до нескольких тысяч тонн.

  1. Пять двигателей первой ступени поднимают ракету на высоту 50-80 километров. После того как топливо первой ступени будет израсходовано, она отделится и включатся двигатели второй ступени.
  2. Примерно через 12 минут после старта вторая ступень доставляет ракету на высоту более 160 километров, после чего отделяется с пустыми баками. Также отделяется ракета аварийного спасения.
  3. Разгоняемая единственным двигателем третьей ступени, ракета переводит космический корабль «Аполлон» на временную околоземную орбиту, высотой около 320 километров. После непродолжительного перерыва двигатели включаются снова, увеличивая скорость космического корабля примерно до 11 километров в секунду и направляя его в сторону Луны.


Двигатель F-1 первой ступени сжигает топливо и выводит продукты сгорания в окружающую среду.

После запуска на орбиту космический корабль «Аполлон» получает разгонный импульс в сторону Луны. Затем третья ступень отделяется и космический корабль, состоящий из командного и лунного модулей, выходит на 100-километровую орбиту вокруг Луны, после чего лунный модуль совершает посадку. Доставив побывавших на Луне космонавтов на командный модуль, лунный модуль отделяется и прекращает свое функционирование.

Взлетом космической ракеты сейчас можно полюбоваться и по телевизору, и в кино. Ракета вертикально стоит на бетонном стартовом столе. По команде из пункта управления включаются двигатели, мы видим загорающееся внизу пламя, мы слышим нарастающий рев. И вот ракета в клубах дыма отрывается от Земли и сначала медленно, а потом все быстрее и быстрее устремляется вверх. Через минуту она уже на такой высоте, куда не могут подняться самолеты, а еще через минуту – Космосе, в околоземном безвоздушном пространстве.

Двигатели ракеты называются реактивными. Почему? Потому что в таких двигателях сила тяги является силой реакции (противодействия) силе, которая отбрасывает в противоположную сторону струю раскаленных газов, получаемых от сгорания топлива в специальной камере. Как известно, согласно третьему закону Ньютона сила этого противодействия равна силе действия. То есть, сила, поднимающая ракету в космическое пространство равна силе, которую развивают раскаленные газы, вырывающиеся из сопла ракеты. Если Вам кажется невероятным, что газ, которому положено быть бесплотным, забрасывает на космическую орбиту тяжеленную ракету, вспомните о том, что сжатый в резиновых баллонах воздух успешно поддерживает не только велосипедиста, но и тяжелые самосвалы. Раскаленный добела газ, вырывающийся из сопла ракеты – тоже полон силы и энергии. Настолько, что после каждого старта ракеты стартовый стол ремонтируют, добавляя выбитый огненным вихрем бетон.

Третий закон Ньютона можно сформулировать иначе, как закон сохранения импульса. Импульсом называется произведение массы на скорость. В терминах закона сохранения импульса старт ракеты можно описать так.

Первоначально импульс космической ракеты, покоящейся на стартовой площадке, был равен нулю (Большая масса ракеты, умноженная на нулевую ее скорость). Но вот включен двигатель. Топливо сгорает, образуя огромное количество газообразных продуктов сгорания. Они имеют высокую температуру и с высокой скоростью истекают из сопла ракеты в одну сторону, вниз. Это создает вектор импульса, направленный вниз, величина которого равна массе истекающего газа, умноженного на скорость этого газа. Однако, в силу закона сохранения импульса, суммарный импульс космической ракеты относительно стартовой площадки должен быть по-прежнему равен нулю. Поэтому тут же возникает вектор импульса, направленный вверх, уравновешивающий систему «ракета – отбрасываемые газы». За счет чего возникнет этот вектор? За счет того, что стоящая до тех пор неподвижно ракета начнет движение вверх. Импульс, направленный вверх, будет равен массе ракеты, умноженной на ее скорость.

Если двигатели ракеты мощные, ракета очень быстро набирает скорость, достаточную для того, чтобы вывести космический корабль на околоземную орбиту. Эта скорость называется первой космической скоростью и равна приблизительно 8 километрам в секунду.

Мощность двигателя ракеты определяется в первую очередь тем, какое топливо сгорает в двигателях ракеты. Чем выше температура сгорания топлива, тем мощнее двигатель. В самых ранних советских ракетных двигателях топливом был керосин, а окислителем – азотная кислота. Сейчас в ракетах используется более активные (и более ядовитые) смеси. Топливом в современных американских ракетных двигателях является смесь кислорода и водорода. Кислородно-водородная смесь очень взрывоопасна, но при сгорании выделяет огромное количество энергии.

Что тянет снаряд вниз

Пассажирский самолет пролетает за час около двухсот пятидесяти километров. Сколько же пролетит за час снаряд, летящий в десять раз быстрее самолета?

Казалось бы, снаряд должен пролететь за час около двух с половиной тысяч километров.

На самом деле, однако, весь полет снаряда продолжается всего лишь около минуты, и снаряд пролетает обычно не больше 15-20 километров.

В чем же тут дело? Что мешает снаряду лететь так же долго и так же далеко, как летит самолет?

Рис. 96. Как летел бы снаряд при выстреле из орудия, ствол которого направлен прямо в цель, и как надо направить ствол, чтобы снаряд попал в цель

Самолет летит долго потому, что воздушный винт тянет его все время вперед. Винт работает много минут, много часов подряд. Поэтому и самолет может лететь непрерывно много часов подряд.

Снаряд же получил толчок в канале орудия, а дальше летит уже сам по себе, никакая сила больше не толкает его вперед. С точки зрения механики, летящий снаряд будет телом, движущимся по и терции. Такое тело, – учит механика, – должно подчиняться очень простому закону: оно должно двигаться прямолинейно и равномерно, если только к нему не приложена больше никакая сила.

Подчиняется ли снаряд этому закону, движется ли он прямолинейно?

Рис. 97. Брошенный камень описывает дугу

Представьте себе, что за километр от вас находится какая-либо цель, – например, неприятельский пулемет. Попробуйте навести 76-миллиметровую дивизионную пушку так, чтобы ствол ее был направлен прямо в пулемет (рис. 96), потом произведите выстрел.

Сколько бы раз вы так ни стреляли, в цель вы не попадете никогда: всякий раз снаряд будет падать на землю и разрываться, пролетев всего лишь метров 300. Продолжаете опыты, и вы скоро придете к такому выводу: чтобы попасть, ствол надо направить не в цель, а несколько выше ее (рис. 96).

Выходит, что снаряд летит не прямо вперед: в полете он опускается. В чем дело? Почему снаряд летит не прямолинейно? Какая сила тянет снаряд вниз?

Ответ очень простой: сила тяжести заставляет снаряд опускаться во время полета.

Всякий знает, что брошенный камень летит не прямо, а описывает дугу и, пролетев небольшое расстояние, падает на землю или в воду (рис. 97). При прочих равных условиях камень летит тем дальше, чем сильнее он брошен, чем большую скорость он получил в момент броска.

Рис. 98. Как понижался бы снаряд под линией бросания при стрельбе в безвоздушном пространстве

Поставьте на место человека, бросающего камень, орудие, а камень замените снарядом; как и всякое летящее тело, снаряд притянется при полете к земле, а из-за этого отойдет от той линии, по которой он был брошен; эта линия так и называется в артиллерии – «линией бросания», а угол между этой линией и горизонтом орудия – «углом бросания» (рис. 98).

В первую секунду полета снаряд опустится приблизительно на 5 метров (точнее – на 4,9 метра), во вторую – почти на 15 метров (точнее-на 14,7 метра), и в каждую следующую секунду скорость падения будет увеличиваться почти на 10 метров в секунду (точнее – на 9,8 метра в секунду). Таков закон свободного падения тел, открытый Галилеем.

Поэтому-то линия полета снаряда – траектория – получается не прямой, а, точно так же как и для брошенного камня, похожей на дугу.

Теперь попытайтесь ответить на такой вопрос: нет ли связи между углом бросания и расстоянием, которое пролетает снаряд?

Из книги Артиллерия автора Внуков Владимир Павлович

Трассирующий снаряд Когда приходится стрелять по цели, которая быстро движется, – по самолету или по танку, полезно видеть весь путь снаряда, всю его траекторию: это облегчает пристрелку.Но обычный снаряд не виден при полете.Вот почему изобрели особые снаряды,

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Химический снаряд «С утра этого ясного весеннего дня было тепло, – легкий юго-западный ветер чуть шевелил ветки деревьев.Прикрытая спереди лесом, в мелкой поросли притаилась батарея. Замаскированные орудия сами казались кустами.Ровно в шесть часов на батарее услышали

Из книги Чудо-оружие СССР. Тайны советского оружия [с иллюстрациями] автора Широкорад Александр Борисович

Капитан Шрапнель и его снаряд 7 августа 1914 года шел жаркий бой: французы бились с немцами, которые только что перешли границу и вторглись во Францию. Капитан Ломбаль – командир французской 75-миллиметровой пушечной батареи – осматривал в бинокль поле боя. Вдали,

Из книги Ракеты и полеты в космос автора Лей Вилли

Куда летит снаряд Попробуйте выстрелить из той же 76-миллиметровой пушки один раз при горизонтальном положении ствола, другой раз – придав пушке угол бросания в 3 градуса, а в третий раз при угле бросания в 6 градусов.В первую же секунду полета снаряд, как мы уже знаем,

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

Что тормозит снаряд Итак, проделаем опыт. Зарядим 152-миллиметровую мортиру таким зарядом, который выбрасывает снаряд с начальной скоростью 171 метр в секунду. При угле бросания в 20 градусов: снаряд по расчетам должен пролететь 1 900 метров. Приблизительно столько пролетит он

Из книги автора

Какой снаряд летит дальше – легкий или тяжелый? Но секрет дальнобойности – не только в форме снаряда.Выпустим снаряды одинаковой формы из трех разных орудий.Орудия эти подобраны так, что начальная скорость их снарядов одна и та же – 442 метра в секунду. Снаряды почти

Из книги автора

Почему снаряд летит ночью не на ту же дальность, что и днем? В то время, пока на огневой позиции маскировали орудия и рыли окопы, вычислители, окончив привязку огневой позиции и наблюдательного пункта, приступили уже к работе другого рода: взяв книжку «Таблиц стрельбы», они

Из книги автора

Самолет-снаряд «М-44» Еще один проект Павла Цыбина - крылатая ракета «РСС» - получил развитие в ОКБ-23 Владимира Мясищева. Здесь этот аппарат, являющийся по сути прототипом космоплана, проходил как самолет-снаряд «Изделие 44» («М-44»).Беспилотный самолет «М-44»,

Памятливый45 > почему в 20-м веке уровень технологии не позволял ракетам взлетать с неподготовленной поверхности

Вот это отжыг!

Памятливый45 > Давайте обсудим один из аспектов причины, почему для ракеты в 20-м веке был абсолютно необходим стартовый стол или (для тактических ракет) специальное статовое устройство.

Так, я весь в предвкушении. Как только Тупой начинает излагать своё видение аспектов, моя клавиатура в ужасе содрогается, предвидя очередной поток слёз на неё.

Памятливый45 > Все тактические ракеты выходят из трубы гранатомёта,

Гениально! Но к такому мы уже привыкли, до слёз пока не пробирает.

Памятливый45 > В авиации эту проблему решили на заре 20-века, оснастив самолёт горизонтальным оперением. После этого самолёт всегда стремился, при отсутсвии воли у пилота, следовать в горизонтальном направлении.

Ещё гениальнее! Тупой, вам надо открыть свою тему в Авиационном. Вот и название есть: "Тупой о стремлениях самолёта". Надо же и авиаторов осчастливить, ато там както скучно. А не все из того раздела сюда заглядывают.

Памятливый45 > Для примера приведу историю с нашим МиГ-23, которого в середине 80-х годов покинул, не помню по какой причине лётчик. Газеты сообщали, что самолёт, оставшись без пилота продолжил горизонтальный полёт, завершившийся в Голландии с завершением керосина.

Что интересно, слово "автопилот" Тупой не в состоянии запомнить никак. И даже просто прочитать. В тексте он его видит, но прочитать и понять смысл не может. Потому что слишком много букв. Тогда во всех газетах буквально измозолили глаза что самолёт летел на автопилоте. Но Тупой не смог дочитать до этого места. Ни асилил.
Поэтому о существовании автопилотов на самолётах Тупой не знает до сих пор. (И никогда не узнает потому что он тупой). Ну а уж о существовании их же на ракетах не говоря уж о лунном модуле вообще НННШ. Потому что очень тупой.

Памятливый45 > Так вот поэтому тактические ракеты стремились сразу направить по параболе в цель.

Эээ... Так почему "поэтому"? Потому что:
Памятливый45 > Все тактические ракеты выходят из трубы гранатомёта, с рельса гвардейского миномёта со скоростью, достаточной для аэродинамической стабилизации ракеты.
Или потому что за рулём МиГа сидел замполит?

Памятливый45 > А МБР или РН оснащали сложной и дорогостоящей системой навигации, которая позволяла завершив стадию вертикального полёта наклонять вектор скорости в заданном направлении.

А их почему? Тоже потому что из гранатомёта? Или какие иные резоны?

Памятливый45 > Тут уже старт должен быть строго ориентированным и более того, информация об атмосферной флуктуации должна присутствовать в программе полёта ракеты.

Вот это уже конгениально! Я начинаю рыдать...

Памятливый45 > Чего же будет нехватать ракетчикам (но не салютчикам естественно) в способе управления при запуске ракеты с неподготовленной поверхности?

Так, так, так... и?

Памятливый45 > Знания собственных координат и ориентации в момент когда ракета приобретёт скорость, достаточную для аэродинамической стабилизации.

Это шедевр! Вот оказывается чего не хватает на неподготовленой поверхности!

Памятливый45 > Чего же нехватало в конструкции ракет 20-века для старта с неподготовленной поверхности?
Памятливый45 > Не аэродинамических средств стабилизации ориентации полёта ракеты.

Ну вот... Только что не хватало координат, а теперь уже неаэродинамических "средств стабилизации". Причём при запуске с "подготовленной поверхности" Тупому их очевидно хватает, как и координат.

Памятливый45 > (Карданное управление вектором тяги (Армадилло), двигатели ориентации и стабилизации (Лунный модуль), газодинамические рули (ФАУ-2).)

Забавно что о карданном управлении вектором тяги Тупой узнал только от Армадильо. Ну и это прогресс, мог ведь и вообще не узнать. Не знает же он например до сих пор о рулевых камерах.
Но это не главное. Главное что он уверен что газодинамических рулей (как у ФАУ-2) ракетам 20-го века не хватало. Ох как не хватало...

Памятливый45 > Может быть уважаемые участники Форума найдут и другие причины почему в 20- мвеке не было ракет, способных взлетать с неподготовленной поверхности.

Уважаемые участники форума их знают и раз 10 пытались их донести до Тупого. Но увы, Тупой их никогда не узнает, потому что он тупой. Невероятно, сказочно тупой.
Тупой, вопрос почему ракеты взлетают со стартовых устройств не интересен. Гораздо интереснее другой вопрос: как можно быть таким невероятно немыслимо тупым? Почему вы не хотите его раскрыть уважаемым участникам форума?

Памятливый45 > Но врядли аппологеты сталибы делать такие предложения, если бы задумались над тем: в нижней части движения ракеты по направляющим, или в самой верхней части будет стоять тот зацеп, ухватившись за который ракета, поволокёт за собой стартовый коплекс.
Памятливый45 > Ну как не вспомнить болото, лошадь и бравого аппологета отрастившего длинную косичку.

Мммм... Дааа... Не оправдал Тупой моих надежд. Не развеселил новыми гениальными открытиями типа забивания флага молотком. А под конец вообще расстроил очередной невероятно убогой попыткой сострить...

Если вы часто летаете или часто наблюдаете за самолетами на сервисах вроде , то наверняка задавали себе вопросы, почему самолет летит именно так, а не иначе. В чем логика? Давайте попробуем разобраться.

Почему самолет летит не по прямой, а по дуге?

Если смотреть на траекторию полета на дисплее в салоне или дома на компьютере, то она выглядит не прямой, а дугообразной, выгнутой в сторону ближайшего полюса (северного в северном полушарии, южного в южном). На самом же деле самолет на протяжении практически всего маршрута (и чем он длиннее, тем это справедливее) старается лететь именно по прямой. Просто дисплеи плоские, а Земля круглая, и проекция объемной карты на плоскую видоизменяет ее пропорции: чем ближе к полюсам, тем более изогнутой окажется «дуга». Проверить это очень просто: возьмите глобус и натяните по его поверхности нитку между двумя городами. Это и будет кратчайший маршрут. Если же теперь перенести линию нитки на бумагу, у вас получится дуга.

То есть, самолет всегда летит по прямой?

Самолет летит не как ему заблагорассудится, а по воздушным трассам, которые прокладываются, конечно, таким образом, чтобы минимизировать расстояние. Трассы состоят из отрезков между контрольными точками: в их качестве могут использоваться как радиомаяки, так и просто координаты на карте, которым присвоены пятибуквенные обозначения, чаще всего легко произносимые и поэтому запоминающиеся. Вернее, произносить их нужно побуквенно, но, согласитесь, запомнить сочетания вроде DOPIK или OKUDI проще, чем GRDFT и UOIUA.

При прокладке машрута для каждого конкретного полета используются различные параметры, в том числе тип самого самолета. Так, например, для двухдвигательных самолетов (а они активно вытесняют трех- и четырехдвигательные) действуют нормы ETOPS (Extended range twin engine operational performance standards), которые регламентируют планирование маршрута таким образом, чтобы самолет, пересекая океаны, пустыни или полюса, находился при этом в пределах определенного времени полета до ближайшего аэродрома, способного принять данный тип ВС. Благодаря этому при отказе одного из двигателей он сможет гарантированно дотянуть до места совершения аварийной посадки. Разные самолеты и авиакомпании сертифицированы на разное время полета, оно может составлять 60, 120 и даже 180 и в редких случаях 240 (!) минут. Между тем планируется сертифицировать Airbus A350XWB на 350 минут, а Boeing-787 на 330; это позволит отказаться от четырехдвигательных самолетов даже на маршрутах вроде Сидней-Сантьяго (это самый протяженный в мире коммерческий маршрут, проходящий над морем).

По какому принципу самолеты движутся в районе аэропорта?

Во-первых, все зависит от того, с какой полосы в данный момент происходят взлеты в аэропорту вылета и на какую садятся в аэропорту прибытия. Если вариантов несколько, то для каждого из них существует по несколько схем выхода и захода: если объяснять на пальцах, то каждую из точек схемы самолет должен проследовать на определенной высоте на определенной (в пределах ограничений) скорости. Выбор полосы зависит от текущей загрузки аэропорта, а также, в первую очередь, ветра. Дело в том, что и при взлете, и при посадке ветер должен быть встречным (или дуть сбоку, но все равно спереди): если ветер дует сзади, то самолету для поддержания нужной скорости относительно воздуха придется иметь слишком большую скорость относительно земли – может и длины полосы не хватить для разбега или торможения. Поэтому в зависимости от направления ветра самолет при взлете и посадке движется или в одну сторону, или в другую, и полоса имеет два взлетных и посадочных курса, которые, будучи округлены до десятков градусов, используются для обозначения полосы. Например, если в одну сторону курс 90, то в другую будет 270, и полоса будет называться «09/27». Если же, как это часто бывает в крупных аэропортах, параллельных полос две, они обозначаются как левая и правая. Например, в Шереметьево 07L/25R и 07R/25L, соответственно, а в Пулково – 10L/28R и 10R/28L.

В некоторых аэропортах полосы работают только в одну сторону – например, в Сочи с одной стороны – горы, поэтому взлетать можно только в сторону моря и заходить на посадку только со стороны моря: при любом направлении ветра он будет дуть сзади или при взлете, или при посадке, так что пилотов гарантированно ждет небольшой экстрим.

Схемы полетов в зоне аэропорта учитывают многочисленные ограничения – например, запрет на нахождение ВС непосредственно над городами или специальными зонами: это могут быть как режимные объекты, так и банальные коттеджные поселки Рублевки, жителям которой не очень нравится шум над головой.

Почему в одну сторону самолет летит быстрее, чем в другую?

Это вопрос из разряда «холиварных» – пожалуй, больше копий сломано только вокруг задачки с самолетом, стоящим на движущейся ленте – «взлетит или не взлетит». Действительно, на восток самолет летит быстрее, чем на запад, и если из Москвы в Лос-Анджелес добираешься за 13 часов, то обратно можно за 12.

То есть, быстрее лететь с запада на восток, чем с востока на запад.

Гуманитарий думает, что Земля-то крутится, и когда летишь в одну из сторон, то точка назначения приближается, ибо планета успевает провернуться под тобой.

Если вы слышите такое объяснение, срочно дайте человеку учебник географии за шестой класс, где ему объяснят, что, во-первых, Земля вращается с запада на восток (т.е. по этой теории должно быть все наоборот), а во-вторых, атмосфера вращается вместе с Землей. Иначе можно было бы подняться в воздух на воздушном шаре и висеть на месте, ожидая проворота до того места, где нужно приземлиться: бесплатные путешествия!

Технарь пытается объяснить этого явления силой Кориолиса , которая действует на самолет в неинерциальной системе отсчета «Земля-самолет»: при движении в одну из сторон его вес становится больше, а в другую, соответственно, меньше. Вот только беда в том, что разница в весе самолета, создаваемая силой Кориолиса, весьма мала даже по сравнению с массой полезного груза на борту. Но это еще полбеды: с каких пор масса влияет на скорость? Вы же на автомобиле можете ехать 100 км/ч и один, и впятером. Разница будет только в расходе топлива.

Истинная причина того, что самолет на восток летит быстрее, чем на запад, заключается в том, что ветры на высоте нескольких километров чаще всего дуют именно с запада на восток, и так что в одну сторону ветер получается попутным, увеличивающим скорость относительно Земли, а в другую – встречным, замедляющим. Почему ветры дуют именно так – спросите Кориолиса, например. Кстати, изучение высотных струйных течений (это сильные ветра в виде относительно узких воздушных потоков в определенных зонах атмосферы) позволяет прокладывать маршруты таким образом, чтобы, попав “в струю”, максимально увеличить скорость и сэкономить топливо.